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The conclusions reached by Backus and Hdnon, that resonance relations in 
the solar system of the sort proposed by ~vIolchanov are a result of chance, is 
based on a very crude statistical model. A more accurate model gives a value 
P ~ 10 -1° for the probability of chance formation of systems similar to the 
solar system. 

I. INTRODUCTION 

The present paper is a reply to the 
critiques by Backus (1969) and Hdnon 
(1969) of my paper (Molchanov, 1968) 
arguing for resonances in the periods of the 
planets. [See also Dermott, (1969).] In my 
opinion the statistical model employed by 
Backus (1969) is unsatisfactory on four 
counts: 

(1) The Euclidean metric postulated is 
not characteristic of the frequency space. 

(2) The significance of nearby planets 
compared with major and especially dis- 
t an t  planets is exaggerated. 

(3) The definition of good systems is 
inadequate. Their number is sharply 
overstated. 

(4) The structure of the solar system has 
been oversimplified. Among the four basic 
subsystems only planets have been con- 
sidered. 

A better model, free of these short- 
comings, was presented in the spring of 
1967 in Moscow at a conference on celestial 
mechanics. A translation of tha t  paper 
follows in this same issue of Icarus 
(Molchanov, 1969). As an alternative 
model is being presented it is necessary to 
analyze the underlying premises of each 
model. 

II. PROXIMITY IN FREQUENCY SPACE 

Backus uses formulas from analytical 
geometry to measure the proximity of 
frequency vectors. This is equivalent to 
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postulating Euclidean metrics in frequency 
space. The meaning of such a postulate is 
difficult to understand, and it is doubtful 
whether such a simple meaning can be 
given to motion in frequency space. 

Frequency intervals have been measured 
for a long time in the theory of oscillations, 
i.e., musical acoustics. The tempered 
system which is commonly used is a 
logarithmically isometric scale in which 
the octave (ratio of frequencies 1:2) is 
divided into 12 equal intervals (semitones). 
I t  follows tha t  frequency intervals are 
measured by the logarithms of the ratio 
of the frequencies. 

The important question about the 
closeness of a tempered system to a pure 
system serves as a good indicator to the 
problem of the reality of resonances in 
the solar system; this has already been 
resolved in musical acoustics. Thus the 
"well-tempered" clavier should be likened 
to an experimentally observed system; 
the pure system 

{1, 8/9, 4IS, 3/4, 2/3, 8/15, 1/2} (1) 

can be considered as a set of exactly 
resonant frequencies which approximate 
the tempered system given by 

2-0/12, 2-2/12, 2-4/12, 2-5/12, 2-7/12, 
2 -9/12, 2 -11/12, 2 -12/12. (2) 

These vectors will be used to construct a 
table analogous to the tables for the 
subsystems of the solar system. The 
measure of closeness ln[wobs/w~or ] can be 
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T A B L E  I 

RESONANCE VECTORS ANDFREQUENCIESOFAWELL-TEMPERED SCALE 

Interval Clavier Pure system 
("Planet") ("obs") ("theor") A¢o/¢0 

P r i m a  1.0000 1.0000 - -  0 0 - 2  0 0 0 3 0 
Second 0.8909 0.8889 0.0022 0 O 3 0 0 - 4  0 0 
T h i r d  0.7937 0.8000 - 0 . 0 0 7 9  - 2  0 0 0 3 0 0 0 
F o u r t h  0.7492 0.7500 -0 .0011  1 0 0 0 0 0 0 - 2  
F i f t h  0.6674 0.6667 0.0011 0 3 0 0 - 4  0 0 0 
S i x t h  0.5946 0.6000 - 0 . 0 0 9 0  0 0 0 - 2  0 0 0 3 
S e v e n t h  0.5297 0.5333 - 0 . 0 0 6 8  - 4  0 5 0 0 0 0 0 
O c t a v e  0.5000 0.5555 0.0000 

replaced in all cases by  the simpler 
expression A~o/oj. In fact 

ln¢°°b'toth~o r = ln°J +oJ A°J = ln(1 + ~ -~ ) 

Aoj 1 (Ato~ 2 Ato 
- ~ ~\-~/ +-..z--~ ( 3 )  

The value in the Aoj/¢o column is of the 
same order as for the solar system. There- 
fore, Backus's assertion would result in 
mass unemployment among those who 
tune musical instruments. Why ~tun~ a 
violin (the harp and pianoforte are dis- 
cussed below) if any random set of strings 
will sound 45 times purer than a well- 
tempered scale [see Eq. (2), Backus (1969)]? 

This mistaken argument by  reductio ad 
absurdum presents a serious question about 
the correct definition of the class of good 
systems. A detailed treatment of the 
question is given below. 

I I I .  T H E  R O L E  OF DISTANT PLANETS 

When calculating the discrepancy using 
Eq. (5) (Baekus, 1969) it is found that  
Mercury's role is 50 times greater than 
that  of Jupi ter  and 1000 times greater 
than that  of Pluto. In other words, an 
error of 0.1~o in Mercury's frequency 
gives an error of 5~/o in Jupiter 's  fre- 
quency; Pluto's frequency will not even 
be calculable. I t  is strange that  Mercury 
becomes so important compared with 
Jupi ter  although they are only distantly 
related and despite what was said in 
Section II. This suggests that  the use of 

Euclidean metrics is inappropriate in 
frequency space. An analogy with musical 
instruments is useful at this point. I f  all 
the strings of a pianoforte are well tuned 
except one (which, say, is broken) Eq. (5) 
will not distinguish this instrument from 
a group of strings tightened at random. 

IV. Good SYSTEMS 

The essential difference between the 
two rival models lies in the definition of the 
class of "good" systems. A definition of 
good resonance is given by Backus and it 
is stated that  a more restricted class of 
system is "difficult to imagine." In fact 
this is not only possible, but  is precisely 
what must be done; it is dealt with in the 
original work on the subject by  Molchanov 
(1968). 

Backus has adopted an approach which 
is methodologically unsatisfactory in tha t  
resonances are examined individually and 
independent of one another. Thus the 
system as a whole could appear bad if 
individual resonances are bad as described 
in Section VI, below. In addition to the 
composite parts of a system being good, 
it is necessary that  their combination also 
be good. This condition of mutual  com- 
patibility decreases the number of "good" 
systems. 

An alternative definition of the class of 
good systems, discussed in detail in the 
following paper, is obtained from the 
physical meaning of resonance vectors. 
The elements of such a vector are co- 
efficients of the resonant phase, i.e., the 
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first integral of the unperturbed system. 
But  a n y  linear combination of resonant 
phases is also a resonant phase. Thus, 
various sets of resonant phases can produce 
one and the same system. [Because of this 
Backus's estimate of the number of good 
systems is too high. Our calculation results 
in an overestimation too, but it is not so 
excessive as to distort the entire picture.] 
However, all the available methods are 
not equally valid. A one-to-one substitu- 
tion of phase variables is not permissible 
with all sets of resonant phases. For ex- 
ample, suppose 

~ = ¢i - ~- 
Replacing these phases by an equivalent 
system, we have 

~ = ~v l  - ~v2 = 2 ~ a  - 2 ¢ ~ .  

We see tha t  the multiple phase ~2 is 
concealed in the original system. Reducing 
this to an equivalent pair we obtain the 
phases 

~2 = ~ 2  - ~ 3 -  

This permits extension to a system of 
phases. One-third of the phase (non- 
resonant) can be chosen by different 
means. Thus, for example, 

~f3 = ¢ 1 - -  ¢2" 

Naturally in the multiple-frequency situa- 
tion multiple phases are more likely to be 
concealed and their recovery is not a 
simple matter. A general method is given 
by Molchanov (1966) and is based on the 
following theorem : 

THEORE1E[ I 

An integral (not necessarily square) 
matrix hr can be represented as a product 
iV = T A  of the triangular integral matrix 
T and the square integral matrix A with 
determinant equal to 1. 

In the triangular matrix T the elements 
above the diagonals are zeros. I t  may have 
an incomplete number of rows (equal to 
the number of resonance vectors, i.e., the 

rows in matrix h 7) and in this sense T is 
a right triangle; the nonzero elements of 
this matrix lie in the right triangle. 
Nonzero diagonal elements of T indicate 
the presence of multiple phases in the 
system h r . The upper rows of matrix 21 
(which are equal in number to the rows 
in matrix hr) form a resonant system 
equivalent to the system hr, but permitting 
addition to the whole matrix of the change 
of phase variables. 

The rari ty of systems like the solar 
system has been evaluated in the following 
paper and is based on the properties of 
matrix A. In my opinion the matrices hr 
used by Backus cannot give a correct 
picture. The example given above where 

0 - ' - I  

T - -  2 

shows tha t  the matrices are analogous to 
reducible fractions; their number is much 
greater than the number of irreducible 
fractions, to which matrices A are analo- 
gous. 

V. SATELLITE SYSTEMS 

The arguments presented above are not 
a strict proof in themselves. A proof can 
only be contained in the formulation of 
an exact theory of resonance states 
within the framework of complete systems 
of equations with all perturbations taken 
into account. In particular, the question 
of stability must be resolved. Why are 
planets and satellites locked into simple 
resonances whereas the rings of Saturn 
and the asteroid belt have gaps in these 
places? Also, why are resonances of axial 
rotation treated as stable and well known 
[1:1, "prima," for the Moon and 2:3, a 
fifth, for Mercury]? Does this not mean 
tha t  Mercury is more likely a satellite of 
the Sun than the common planet? These 
questions cannot be answered in the 
framework of an unperturbed system, and 
remain for future solution. 

I f  the arguments in favor of the reality 
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of resonances do not appear convincing, 
then in the author's opinion the arguments 
against them are even less persuasive. In 
particular, the studies should not be 
restricted to planets alone. The principle 
of maximum resonance is formulated for 
any system which has attained evolution- 
ary maturi ty;  and the unique structure of 
satellite systems is important because it 
confirms the generality of this principle. 

The probability of only planets being 
close to resonance is given in the following 
paper by 

P < 10 -4. 

I f  we consider the probability of coinci- 
dence of the four subsystems (the planets 
and the moons of Jupiter, Saturn, and 
Uranus) as a result of chance (i.e., closeness 
of each of the four subsystems to reson- 
ance) then P is given more closely by 

P < 10 -l°. 

The discrepancy always has the same sign 
for satellite systems--negative for Uranus 
and positive for Jupiter and Saturn 
(Molchanov, 1969). Therefore the proxi- 
mity can be improved by choosing the 
frequency scale in another manner. This 
is especially evident for Saturn where 
simply the selection of Dione as the 
calibrating body instead of Titan notice- 
ably decreases the discrepancy Ao~/w. 

VI.  I s  THE WELL-TEMPERED CLAVIER A 
GOOD SYSTEM? 

When dealing with problems on the 
reality of resonances it is very important 
to understand what is meant by a good 
system. The difference between the two 
alternative definitions is useful to illus- 
trate a theoretically interesting example of 
a pure system. For simplicity we shall 
denote the system by K;  its resonance 
matrix N is 

N = 

of the form 

0 0 --2 0 0 0 3 0 
0 0 3 0 0 - 4  0 0 

--2 0 0 0 3 0 0 0 
1 0 0 0 0 0 0 --2 
0 3 0 0 --4 0 0 0 
0 0 0 - 2  0 0 0 3 

--4 O 5 0 0 0 0 0 

All the rows of this system belong to the 
class, K, of all rational hyperplanes n for 
which n 2 -  0 in at least six cases out of 
eight and In d ~< 5 in the remaining two 
cases. In musical acoustics this is the class 
of frequency intervals containing only 
primes, thirds, fourths, and fifths with 
octavial rises; it does not contain seconds. 

This class is really quite similar to 
Backus's class (i). I t  contains 3388 elements 
in all instead of the 28,3500 elements in 
class (i): 

8~ 
- - ×  112=3388. 
6!2! 

Nevertheless K is not good in the same 
sense as are good subsystems of the solar 
system. To make certain of this it is 
necessary to find a matrix A whose 
construction will also determine whether 
or not it belongs to good systems. There- 
fore matrix N must be reduced to a 
triangular matrix T. At the same time 
we shall ascertain tha t  multiple phases are 
concealed in matrix N. 

The method used to find A is based on 
the simultaneous construction of rows of 
matrix A and columns of the inverse 
matrix B = A -1. These rows ai and b k are 
biorthogonal as shown by the equality 

A B = E  

(where E is the unit matrix) and the rule 
for matrix multiplication, i.e., rows from 
the left and columns from the right. 
Assume (induction from the number of 
rows in matrix N) tha t  we have already 
constructed S rows and columns ai and bk 
so tha t  the following relations are satisfied: 

n 1 = T l l  a l  
n2 = T21a l+  T22a2 

n,  = Tslal  + T,2a2 + "'" T, ,as .  

Examine the next row n,+l and we see 
tha t  the vector m,+l is orthogonal to all 
the preceding bi 8: 

m s + l  = ns-{-1 - -  Ts+l ,  1 a l " " "  Ts+l ,  ,as, 

where the numbers T,+l,i are found from 
the orthogonality conditions 

Ta+l, i = (n,+l, ai). 
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The  following lemma contains the  most  
impor t an t  difference between the  integral  
case and the  usual me thod  of  orthogonal-  
izat ion:  

LEMMA 

Fo r  an integral  vec tor  (rows) m, an 
integral  vec tor  (columns) e will be found 
so t h a t  thei r  scalar p roduc t  is equal  to  
the  greates t  common divisor of  the  ele- 
ments  of  vec tor  m:  

d = (m, e). 

Result 
Any vec tor  m is propor t ional  to  a vec tor  

a which has an adjoint  column e 

m = da ,  (a, e) = 1. 

The  Eucl idean  a lgor i thm for searching for 
the  greates t  common divisor of  two 
numbers  gives p roof  of  the  L e m m a  on a 
plane. The general izat ion is ob ta ined  by  
induction.  

I f  the  rows of  ma t r ix  N are l inearly 
independent  t hen  the  vector  ms+l is 
different f rom zero. Applying the  L e m m a  
above shows concealed mult iple  phases 
and gives the  number  T8+1, 8+1 (from which 
we can also obta in  the  mult ipl ic i ty  fac tor  
of  the  phase ms+l) and column c8+1; f rom 
this 

m s + l  = T8+1,8+1 as+l ,  (as+l ,  e8+1) = 1. 

We have  a l ready obta ined  the  general row 
for matr ices  A and T as 

a s +  1 : r o w s +  1 A, 

n s +  1 = T s + l ,  l a 1 + • "" -4- T s + l , s a 8  

--}- T s + l , s +  1 a s + l .  

However ,  es+~ cannot  ye t  be wr i t ten  in the  
s + 1 column of  ma t r ix  B. I t  mus t  first be 
or thogonal ized to  all the  preceding ais. 
This is analogous to  the  procedure  for 
correct ing n8+1 : 

b 8 + 1  = e 8 + 1  - -  Q1,8+1 bl"'" Qs, s+l b~, 

where 

Q i s + i = ( a ~ ,  e s + l ) .  

F r o m  the  or thogonal i ty  ob ta ined  earlier of  
as+l to  all preceding hi, bs+l remains  
adjoin t  to  as+l : 

( a s + l ,  b s + l )  ---- ( a s + l ,  e s + l )  = 1. 

Remarks 
I f  m a t r i x / V  has an incomplete  n u m b er  

of  rows as in the  resonance matr ix ,  t hen  to  
obta in  a square ma t r ix  i t  is sufficient to  
add  missing rows, arbi t rar i ly ,  p rovided  
t h a t  t h ey  are l inearly independent .  A row 
such as n s can be added to  ma t r ix  N ;  in 
par t icu lar  

n s = ( 0  0 0 0 0 0 0 1). 

B y  applying this me thod  to  ma t r ix  2V we 
do no t  obtain the  mult iple phase in the  
first six steps. Because of  this the  t r iangular  
ma t r ix  T (of the  incomplete,  s ixth order) 
has unit ies on the  main diagonal and m a y  
be included in ma t r ix  A. This is an 
impor t an t  po in t - -d i f f e ren t  matr ices  m a y  
determine  one and the same system. When  
t h ey  are selected arbi t rar i ly  the  es t imated  
number  of  good systems is much  too high. 
In  fact  there  are even fewer good systems 
t han  our  calculations would indicate.  
Backus 's  es t imate  is so exaggera ted  t h a t  i t  
obscures the  t rue  si tuation.  

Re turn ing  to the  example,  let us discuss 
in grea ter  detai l  the  nascent  s ta te  of  the  
mult iple  phase. After  six steps, the  follow- 
ing s i tuat ion arises: the  resonance ma t r ix  
i s  

0 0 
0 0 

- 2  0 
A =  

1 0 
0 3 
0 0 

--2 0 0 0 3 0 
3 0 0 --4 0 0 
0 0 3 0 0 0 
0 0 0 0 0 --2 
0 0 --4 0 0 0 
0 --2 0 0 0 3 

and f rom its first six rows the  ma t r ix  of  
six bior thogonal  columns is cons t ruc ted:  

B =  

0 0 
0 0 
4 3 
0 0 
0 0 
3 2 
3 2 
0 0 

4 9 12 18 
4 8 11 16 
0 0 0 0 
3 6 9 13 
3 6 8 12 
0 0 0 0 
0 0 0 0 
2 4 6 9 
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N o w  consider the  seven th  row 

n ~ = ( - 4  0 5 0 0 0 0 0) 

and  f rom it  s u b t r a c t  the  componen t s  along 
the  six preceding rows:  

m 7 = n 7 -- T71a1 .... T76a6. 

I n  appea rance  the  seven th  row is not  v e r y  
different f rom the  six preceding rows. The  
two  nonzero e lements  in i t  are no t  v e r y  
large and  it  would seem t h a t  a mul t ip le  
phase  could not  be  concealed anywhere  in 
such a row. Never the less  there  is a dodeca-  
tup le  phase  hidden in it. 

This  is an example  of  deta i led compu ta -  
t ion  and  it  demons t r a t e s  the  difference 
be tween  resonance considered individual ly ,  
and  the  same resonance as p a r t  of  a sys tem 
of  resonances.  

Calculat ing the  coefficients 

TTK = (n~, b~) 

we ob ta in  

T~I = 20, TT~ = 15, TTa = - 1 6 ,  

T74 - - 3 6 ,  T75 = - 4 8 ,  T76 = - 7 2 .  

Thus  

m T - ( 0  144 0 - 1 4 4  - 1 4 4  6 0 - 6 0  144). 

Consequent ly  now n7 in the  sys t em al,  a6 
is equ iva len t  to the  mul t ip le  row m~ and  
does no t  pe rmi t  expans ion  to  the  uni- 
modu la r  m a t r i x  A. To m a k e  this possible 
i t  is necessary  to  divide the  mul t ip le  phase  
b y  the  grea tes t  com m on  divisor  of  its 
coefficients and  

t T = ( 0  12 0 --12 - 1 2  5 - 5  12). 

The  new row is equ iva len t  (in the  sys t em 
of  the  first six rows) to  b o t h  rivals,  bu t  can 
be included in a m a t r i x  wi th  a d e t e r m i n a n t  
o f  uni ty .  The  cons t ruc t ion  is still in- 
complete.  The  large coefficients o f  the  new 
row have  to be  decreased b y  deduct ing  
f rom it  the  in tegral  combina t ion  of  
preceding rows. The  equivalence  and  
n o n m o d u l a r i t y  r ema in  conserved.  Evi -  
dent ly ,  the  bes t  combina t ion  to  use 
would be 

aT '= t~ + al  + as -- 3a~- -  4a8 

with  small  e lements  

a7 = (0 3 1 --4 0 1 - 2  0). 

W h e n  rows are changed,  columns m u s t  
also be  changed so t h a t  the  inverse t rans -  
fo rma t ion  can be accomplished.  This  is 
easy  to  i l lus t ra te  b y  the  fo rmula  

( T A )  ( B T  -1) = T ( A B )  T -1 = T T  -1 = E.  

After  all these manipu la t ions  the  " e l egan t "  
m a t r i x  A which contains  all the  resonances  
in the  first seven rows and  wi th  deter-  
m i n a n t  one is g iven b y  

0 0 
0 0 

--2 0 
1 0 

A =  
0 3 
0 0 
0 3 
0 - 2  

2 0 0 0 --3 0 
--3 0 0 4 0 0 

0 0 3 0 0 0 
0 0 0 0 0 --2 
0 0 --4 0 0 0 
0 0 2 0 0 --3 
1 --4 0 1 --2 0 
0 1 1 --2 2 1 

F r o m  the  inverse B = A -1 

B =  

72 72 4 9 48 54 72 180 
64 64 4 8 43 48 64 160 
56 57 0 0 36 48 60 144 
54 54 3 6 36 41 54 135 
48 48 3 6 32 36 48 120 
42 43 0 0 27 36 45 108 
37 38 0 0 24 32 40 96 
36 36 2 4 24 27 36 90 

I t  is ins t ruc t ive  to  compare  the  s t ruc tu ra l  
m a t r i x  of  a wel l - tempered  clavier  wi th  
mat r ices  of  p lane ts  and  satell i tes;  the  
difference in the  va lue  of  the  coefficients is 
expected.  I n  mat r ices  of  the  solar sy s t em 
(Molehanov, 1969) over  ha l f  the  nonzero  
e lements  are u n i t y - - 4 5  out  of  77. I n  the  
present  case nonzero coefficients equal  
to  un i t y  fo rm less t h a n  a th i rd  of  the  
t o t a l - - 6  out  of  23. 

However ,  the  ma in  difference is in t he  
s t r u c t u r e  o f  the  matr ices .  I n  the  clavier  
m a t r i x  nonzero e lements  are d i s t r ibu ted  
t h r o u g h o u t  the  square  field of  size 8 × 8 
= 64. Also matr ices  of  the  solar s y s t e m  are 
a lmos t  t r iangular .  The  following s imple 
calculat ion i l lustrates  the  difference quali-  
t a t ive ly .  

Consider the  n u m b e r  of  ways  in which 
the  23 nonzero e lements  can be located.  
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In  clavier matrices this number of com- 
binations is given by 

64! 
o~ 23!41!" 

In nearly triangular matrices of the solar 
system 5 nonzero elements should be 
placed on the diagonal. The remaining 18 
positions can be chosen arbitrarily from 
the 28 positions above the diagonal and 
3 below it in the lower right-hand corner. 
In all, 

31! 
C~8 = 18[ 13!" 

The ratio of these numbers can be obtained 
from Stirling's formula and it is really 
quite large : 

23 18 log[C 64/Cal ] "~ 8.9. 

Thus triangularity alone, without con- 
sideration of the arrangement of nonzero 
elements near the diagonal, leads to a 
billionfold difference in the complete set of 
matrices. Structural matrices of the solar 
system are better in the sense tha t  they 
belong to a more restricted class than the 
structural matrix of a well-tempered 
clavier. 

VII. H ~ o N ' s  RESONANCES 

I t  appears tha t  the critical comments 
made by H~non (1969) are a result of 
some misunderstandings. He feels tha t  
"good" frequencies are situated on the 
axis of frequencies with a density 8/R 
where R = 4 5 3 6  times the number of 
"good" resonances 

nco i ± ~oj -t- ¢o k -- 0. 

This would have been true if all the 
frequencies lay on a segment of length 
unity. In fact, H~non's resonances are 
worse than tha t  of a well-tempered 
clavier. There is a considerable amount of 
scatter in his resonances. For example, 
suppose n = 4 in the first four equations 
(4 being the intermediate value between 
2 and 7): 

~ 1  =- 4¢°e = 0 

oJ u - -  4 ~  a ---- O 

co a - -  4 ¢ o  a = 0 

¢o 4 ~ 4 ¢ o  5 = O.  

I f  w 5  = 1 then oJ 1 -- 256 and the expected 
density of good points will be A~o _ 0.46 
and not A~o_0.0018 as proposed by 
H6non. 

There is another fact relating to H~non's 
artificial system. I t  is a "good" system. 
With 1019 good systems by my definition 
(Molchanov, 1969), in one of the 101° 
neighboring galaxies somewhere there is 
precisely such a planetary system; but do 
the frequencies of our solar system serve 
to refute this other system's resonant 
structure? 

For a mathematically correct estimate 
of the probability, P, N trials are necessary, 
where N >> No -- 1/P. The following paper 
shows tha t  N o > 104. As far as random 
numbers relate to solving this problem 
H~non says " I t  is well known, however, 
that  intuition can be very misleading in 
matters of probability. Chance alone can 
produce seemingly highly improbable 
results." I agree. But artificial systems can 
be such highly improbable results. 

I would venture to suggest tha t  chance 
has profited by circumstances to cause 
damage to the domain of determinism. 

VIII.  GENER~ OBSERVATIONS 

I am grateful to the critics who have 
pointed out, quite convincingly, the weak- 
ness in the principle of resonance namely 
the lack of a definition of good systems--  
in the form in which it was presented 
before 1967. This confirms the timeliness 
with which the definition was made more 
precise (1967), and as we have at tempted 
to show, such a definition is necessary to 
nullify the critical remarks made by 
Backus and H~non. But a precise definition 
by itself is insufficient and inconclusive. 
As long as the heterogeneity of the planets 
has not been taken into account, we 
cannot consider tha t  the structural prin- 
ciples of the solar system are thoroughly 
understood. 

I t  is possible tha t  heterogeneity is 
generally characteristic of multiple-fre- 
quency systems although it does vary 
quite widely in the way it manifests itself. 
Historically the resonance phenomenon 
was first discovered in music, i.e., in an 
essentially biological system (It served 
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FIGS. 1 and 2. 
c a s e .  

as the  reason for the  founding of  an ent i re  
phi losophical  s c h o o l - - t h e  P y t h a g o r e a n  
mys t ics  of  whole numbers) ,  and  only  m u c h  
la te r  appea red  in q u a n t u m  systems.  There-  
fore, good resonan t  sys tems  canno t  be  
the  same in all cases. I n  acoust ics  and  
q u a n t u m  physics  the  s t ruc ture  of  a g iven 
sy s t em can be judged  f rom its f requency  
s p e c t r u m ;  in mechanics  this  still r emains  
an  open quest ion (see Sect ion VI).  The  
spec t rum of  a p l a n e t a r y  sys tem,  like t h a t  
o f  m a n y  q u a n t u m  systems,  is s t rongly  

1. Two-frequency motion. Incommensurable. 2. Resonance 2 : 3 in the general 

r a re f i ed - -9  frequencies in 10 o c t a v e s - -  
while in acoust ics there  are 12 str ings in 
one oc tave ;  the  whole visible opt ical  
spec t rum is conta ined in a seventh .  1 There-  
fore it  is methodologica l ly  in teres t ing to  
s t u d y  " i n t e r m e d i a t e "  mechanica l  sys tems  
such as asteroids,  the  rings of  Sa tu rn  or 
resonances of  ro ta t ion  wi th  revolu t ion  (see 
Jeffreys,  1969). 

1 Why one octave is sufficient in optics while 
9 octaves arc inadequate in acoustics, is an 
interesting biological question. 

FIG. 3. Identical resonance; 1 : 1 of a coulomb FIG. 4. Identical resonance 1 : 2 of a harmonic 
field, oscillator. 
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I n  conclusion, once again  (Molchanov, 
1966) we no te  t h a t  the  rule of  m a x i m u m  
resonance  is appl icable  even  to  the  mot ion  
o f  one p lanet .  

I t  is wel l -known (Landau  and  Lifshits,  
I958) t h a t  mo t ion  in the  cent ra l  po ten t i a l  
field U(r) is a lways  horizontal ,  genera l ly  
double-frequencied,  and  fills up  a whole 
ring. The  angula r  f requency  oJ¢ is re la ted  
to  the  radia l  f requency  (o r b y  

oJ¢ - koJ~ ~- 0. 

The  coefficient of  w~ depends  on the  energy  
E ,  m o m e n t u m  M and  mass  m of  the  
par t ic le  

k = k(E,  M ,  m) 

1 ~r~,~ (M/r  2) dr 

= J , . , .  { 2 m [ E  - M2/r2}' ' 

where the  l imits  of  in tegra t ion  r~i ,  and  
r ~  are the  essential  classical t u rn ing  
points ,  i.e., the  solutions of  the  equa t ion  

2m[E -- U(r)] - (M2/r 2) -- O. 

I n  any  field U(r) there  exis t  r e sonan t  va lues  
of  ene rgy  and  m o m e n t u m  for  which the  
frequencies  become commensurab le ,  

k ~-p/q. 

There  are only  two poten t ia l s  for which 
the  resonance is ident ical  for all values  of  
m o m e n t u m  and  energy.  The  coulomb and,  
in par t icular ,  the  Newton ian  po ten t ia l  
correspond to  1 : 1 resonance (unison) ; 1 : 2 

resonance (octave) corresponds to  the  
po ten t ia l  of  a ha rmonic  oscillator (see 
Figs. 1-4). 

I t  is of  in teres t  t h a t  dipole m o m e n t s - -  
the  founda t ion  of  c h e m i s t r y - - c a n  exist  only  
in a coulomb field. I f  the  coulomb field 
vanishes,  no o ther  field can reassemble  
a toms  into molecules.  The  au thor  is gra te-  
ful to  his friend, Dr.  E.  E. Shnoll, who 
b rough t  this  ex t r ao rd ina ry  fac t  to  his 
a t t en t ion .  
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